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A Case Study Tested Framework For Multivariate Analyses Of Microbiomes: Software
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Chairperson: Douglas W. Raiford

The study of microbiomes is important because our understanding of microbial
communities is providing insight into human health and many other areas of interest.
Researchers often use genomic data to study microbial organisms, demonstrating
differences from one organism to the next. Metagenomic data is utilized to study
communities of microbial organisms. The research described herein involved the de-
velopment of a collection of computational methods.
This suite of computational methods and tools (written in the R and Perl lan-

guages) has become a framework used for metagenomic data analysis and result visu-
alization. Multivariate analyses such as Linear Discriminate Analysis (LDA) are used
to determine which microbial organisms are useful in distinguishing between micro-
bial communities. The differences between communities are visualized in two or three
dimensions using dimensional reduction techniques. Other analyses provided by the
framework include, but are not limited to, feature selection, cross-validation, multi-
objective optimization, side-by-side comparisons of communities, and identification
of core members in a microbial community.
The effectiveness of these methods and techniques was verified in multiple real

world case studies such as body fat classification of elk using a fecal microbiome,
identification of important changes in community composition when permafrost is
thawed, and longitudinal classification of intestinal locations. The fecal microbiome
may be used in the future to assist in assessing the health of animal populations
using non-invasive samples. Additionally, the analysis of thawing permafrost may
yield insight into the release of greenhouse gases into the atmosphere, furthering our
understanding of global warming. Our understanding of the intestinal microbiome
may someday grant us understanding and control of our intestinal wellbeing, which
plays a significant factor in immune system response and overall health.
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CHAPTER 1 INTRODUCTION

When developing a large software project, core functionality is often identified and

developed into a code library or suite of libraries. The libraries created during this

project will be referred to as the ‘framework’ in this document. While the framework’s

purpose is data analysis and visualization, it can be separated into two distinct sec-

tions. The first part is the data pipeline (Perl) where data source integration modules

allow data from multiple different data sources to be reformatted into the standard

data format used by the framework. The rest of the framework (R) is focused on the

automation of data analysis and visualization, using algorithms that are not currently

part of other approaches.

To date, the main kind of data analyzed by this framework has been partial 16S

ribosomal RNA gene sequences that have been PCR amplified. This data comes

from environmental samples, which can be anything from feces in the forest to a q-tip

swabbed in someone’s mouth. These biological samples have to be processed in a

laboratory, so that bacterial DNA can be extracted for amplification. The amplified

DNA (i.e. amplicons) are purified in gels and then sent to a high-throughput DNA

sequencing facility to obtain reads from the amplicons. This process generates thou-

sands or millions of DNA reads per sample. These DNA fragments are parts of the

genomes of the bacterial consortium in the original environmental sample; therefore,

metagenomic data.
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The information contained within metagenomic data is being used to solve and

understand many problems. What if we knew precisely which micro organisms in our

intestines caused us to be resistant to one disease and vulnerable to another? People

are taking advantage of this information by using probiotics and avoiding certain

foods. One benefit of understanding the bacterial communities inside of us is being

able to make healthier decisions.

1.1 Motivation

Metagenomic data analysis commonly starts with software packages like Quantita-

tive Insights Into Microbial Ecology (QIIME) [1]. Software that combines many other

software projects together are commonly referred to as software pipelines. The QIIME

pipeline provides a multitude of important data analyses for 16S metagenomic data.

For example, one software module used by QIIME, UniFrac, provides beta diversity

analysis and visualizations [2]. Beta diversity is a measurement of how different two

communities are from each other [3]. Software in the QIIME pipeline can also classify

the DNA sequences, allowing us to know which bacterial taxon that DNA sequence

is most likely to be associated with. Information like this allows researchers to see

the composition of the microbial communities represented by their samples. These

communities are referred to as microbiomes [4].

While a current data analysis approach like beta diversity tells us that microbiomes

are different from one another, it doesn’t tell us which specific bacterial taxon differs

from one community to the next.
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1.2 Goal

The goal of this framework is to provide data analyses and visualizations that not

only show that microbial communities differ but also show how they differ. This will

be accomplished through a variety of independent approaches, allowing researchers

to have more confidence in the framework’s results. First, the framework will identify

sets of genera that can specifically be used to tell microbiomes apart. Next, it will

identify and visualize the core members (genera) of a microbiome, showing the genera

that are the most present in the microbiome being analyzed. Then, the system will

directly visualize two microbiomes side-by-side, allowing researchers to see a bird’s-eye

view of microbiome composition. Finally, these side-by-side microbiome visualizations

will be converted to visualizations that show only the differences between the two

microbiomes.

1.3 Benefits

Biologists and other scientists will be able to use these tools and libraries to analyze

and visualize many different kinds of data. This will help them verify hypothesis-es

and publish results that visualize their work.
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1.4 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 Literature review and overview of the framework

• Chapter 3 Data acquisition and computational methods

• Chapter 4 Presentation of case study results

• Chapter 5 Discussion of results, conclusions, and future directions
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CHAPTER 2 LITERATURE REVIEW

The field of metagenomic analysis uses a wide variety of tools and algorithms.

These can be segregated into categories describing the various problems being solved,

which include anything from sampling animals or environments to statistical analysis.

One of the key ideas in metagenomic data analysis is the idea of a microbiome [5]

[6]. A microbiome can be described as the composition of a microbial community

in some location or environment. For example, the skin on a human knee has a

microbiome and the inside of a human mouth has yet another microbiome. The main

challenege presented by these microbiomes is the speed at which they can change and

the variations that can be found between subjects from the same category [7] [8] [9].

Existing software pipelines provide many different kinds of analyses on metagenomic

data such as beta diversity, OTU classification, and chimera detection.

2.1 Pipelines

The biggest benefit of a pipeline approach (such as that employed by QIIME) is a

workflow that treats many other software projects as swappable modules in a larger

computational process. This results in a flexible framework that supports many dif-

ferent algorithms and performs valuable analyses such as denoising and chimera de-

tection. An example of another pipeline that might be supported by this framework in

the future is MetAMOS [10]. The framework would only require an integration mod-
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ule for MetAMOS output in the data pipeline, which would reformat the MetAMOS

data output into the form expected by the framework’s R libraries. Some examples

of analyses supported by pipelines like these include:

• Krona charts - Web based dynamic pie chart visualizing all or part of the

microbiome in a dataset at differing degrees of taxonomic resolution [11].

• Alpha/Beta diversity plots - Alpha diversity refers to a visualization of

species richness in an ecosystem. By contrast, beta diversity is the difference in

diversity from one ecosystem to another [12].

• Heatmaps - Visual plot showing the density of reads by phylogeny [13].

Pipelines like QIIME provide good flexibility and analysis, but support is more

limited for experimenting with new algorithms and research methods. In order to

add additional analysis to QIIME a script would have to be written so that it could

be added to QIIME’s primary python script invoking the new data analysis software.

This means that it is possible for this framework to be someday integrated with

pipelines like QIIME or MetAMOS, but there is no guarantee which software in use

today will be the best or most widely used in the future. For this reason, it was decided

that the developed framework should remain independent from pipeline approaches

and is more likely to gain a web based graphical user interface than a command line

interface.
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2.2 Diversity

At the time of this writing, researchers have access to tools like UniFrac, Emperor,

phyloseq, HMP, and others to perform data analysis [2] [14] [15] [16]. UniFrac’s beta

diversity analysis can be performed with either weighted or unweighted phylogenetic

distances. Weighted distances take the phylogenetic distances between communities

and weight each individual distance by the proportions of the community members.

Unweighted distances on the other hand use the phylogenetic distances without taking

into account the abundance of the populations in the community. Newer versions of

UniFrac unify the weighted and unweighed approaches because the weighted and

unweighted distance puts too much emphasis on either rare or abundant lineages

[17].

In addition, the phylogenetic trees built in the QIIME pipeline prior to compar-

ative analyses like UniFrac or Emperor can be generated with FastTree [18]. The

phylogenetic trees are not necessarily used by the comparative analysis, but can also

be used to create heatmap visualizations that describe community composition from

a bird’s-eye view.

Emperor is another powerful tool supported by QIIME [14]. It provides interactive

3D ordination plots that can be viewed in a web browser. These plots use the Prin-

cipal Coordinates Analysis (PCoA) algorithm (also called Multi Dimensional Scaling

‘MDS’) in order to create visualizations of metagenomic data [19]. Emperor is a flex-

ible tool that allows researchers to engage with complex multivariate data in a quick

and visual way.
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La Rosa describes another approach for determining whether microbiomes are dif-

ferent or not by using the Dirichlet-multinomial distribution [16]. This distribution

allows the analyst to perform tests of hypotheses, testing microbiomes across groups.

These mathematical techniques are available in the R-Package HMP and can be used

to independently verify beta diversity results, showing that sub groups of data are

different enough from each other for that difference to be statistically significant [20].

Another relevant framework example is phyloseq [15]. It is also built on the

R Language using existing algorithms and tools for data analysis and visualiza-

tion. Some examples of phyloseq analysis include visualizations of alpha/beta di-

versity, phylogeny, heatmaps, and microbiome networks. These analyses are useful

bioinformatics-oriented extensions to the functionality already provided by R.

What these tools/approaches don’t accomplish; however, is a way to describe how

microbial communities are different, specifically which bacterial organisms can be

used to differentiate one microbial community from another. This is a very hard

problem because inter-subject variation (each subject being a single animal or set

of environmental samples) in microbial data often overwhelms the differences found

between microbial communities [7] [8] [9].
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2.3 The Framework

The phylogenetic distances used by other tools like UniFrac are ignored because

this framework focuses entirely on community composition. Therefore, in its attempt

to overcome inter-subject variation, this tool is focused on statistical models and

machine learning algorithms that allow researchers to seek answers to the following

types of questions.

• Identify which members of a microbial community are the most important for

differentiating some predefined grouping of the samples. For example, what’s

the difference between microbiomes sampled from two geographically distinct

populations of North American Elk (Voting Process Section 3.4.4).

• Visualize the data’s groups using only the more discriminatory community mem-

bers (Scatter Plot Section 3.4.4.5).

• Build a model that is able to predict the labels of future data (Classifier Sec-

tion 3.4.3).

• Identify and visualize core microbiomes (Core Pie Charts Section 3.5.1).

• Visualize bacterial presence in one microbiome vs. another (Log Ratio Bar Plots

Section 3.5.2).
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CHAPTER 3 METHODS

The methods described below are organized in roughly the same order they were

performed during the case studies. Some methods are independent of the rest, so

these methods are arranged at the end.

3.1 Methods Syntax And Conventions

Some of the special syntax conventions used in this document are as follows.

• Scientific Names - capitalized and italicized.

• Scripts - bold and Courier font.

• Variables - italicized

• Functions - bold

• System Commands - italicized and underlined
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3.2 QIIME

While the framework can be used on nearly any multivariate data, the origin of the

data used during development and testing was QIIME’s biom format [21] Operational

Taxonomic Unit (OTU) matrices generated by pick otus.py [22]. At the bacterial

level (metagenomic data) OTUs (clusters of organisms) for phylogentic categories like

species or genus are defined by similarity in DNA [23].

Specifically, once samples are taken from an environment, the next step is to re-

cover the DNA by following a protocol like that found in the Qiagen DNA extraction

kit [24]. Sample preparation and sequencing involves many steps including DNA

recovery, Polymerase Chain Reaction (PCR), gel purification, multiplexing ampli-

cons, sequencing by synthesis, and then demultiplexing to a FASTA format before

bioinformatic analysis can begin. The framework currently uses sequence files in the

FASTA/Pearson format [25], but could easily be adapted to other formats as needed.

QIIME was used to determine which OTU reference sequence most closely matches

each sequence in the FASTA files using PyNAST [26] and Greengenes [27]. From that

point, chimera detection was accomplished by UCHIME and USEARCH [28]. Once

QIIME has made sequence matches, it assigns a lineage or taxonomy to each sequence

using the Ribosomal Database Project (RDP) classifier [29]. The RDP classifier uses

the techniques and algorithms described by Greengenes for 16S data [30] [31].

At the end of the QIIME pipeline, the FASTA files are identified to the genus level

based on each sequence’s similarity to the reference sequence in the database that

most closely matched. Having this genus level OTU data from QIIME allowed this

framework to focus on statistical analysis with data that has already been processed

into OTUs, showing the proportion between the number of reads for each taxon and

the number of reads in that sample.
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Because the framework acquires data from multiple sources in many different for-

mats, it makes sense to establish a gateway for new data to be fed into the framework

in a standard way. I met this need by developing a series of data source integration

scripts (modules) written in the Perl language.

3.3 Data Pipeline

Currently, I have developed an integration module written for a few variations of

QIIME’s OTU table output and RDP output via the Simple Object Access Protocol

(SOAP) [32] web-service function seqmatch. Having separate integration scripts for

each data source allows the framework to establish a uniform data standard in the

main data analysis framework. Additionally, this flexibility leaves open the possibility

of integrating other data sources in the future.

The Perl module DataPipeline.pm was developed in support of the framework

described herein so that core functionality like uniform data output, formatting lin-

eage string headers, and normalizing counts data to proportions could be maintained

in a single place rather than scattered across data integration scripts. An example

of Perl’s flexible array usage is shown in Code Listing 3.1 where lineage strings are

formated to display the most specific known taxonomy. Additionally, the core module

supports functionality for generating the union and/or intersection of data matrices

in other Perl scripts. This kind of data manipulation allows multiple QIIME or other

data sources to be merged into a single data set.
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Code Listing 3.1: Format Lineage Strings

1 sub cleanTaxa{
my $args = s h i f t ;

3 #adjus t the l e v e l because ar rays are zero based
my $ l e v e l = $args−>{ ’ l e v e l ’ } − 1 ;

5 my $data = deleteLineageSymbols ({ hash => $args−>{ ’ hash ’ }}) ;
my %cleanedData = ( ) ;

7 my @phyloLevels =
( ”kingdom” , ”phylum” , ” c l a s s ” , ” order ” , ” fami ly ” , ” genus” , ” s p e c i e s ” ) ;

my $othercount = 0 ;
9 f o r each my $taxon ( keys(%$data ) ) {

my @phylo = s p l i t ( ” ; ” , $taxon ) ;
11

#i f the re aren ’ t enough elements i n j e c t some blank othe r s
13 whi le (@phylo < ( $ l e v e l + 1) ) { push (@phylo , ”Other” ) ; }

my $cleanTaxon = $phylo [ $ l e v e l ] ;
15 i f ( $cleanTaxon eq ”Other” ) {

$othercount++;
17 f o r (my $ i = $ l e v e l ; $ i >= 0 ; $i−−){

i f ( $phylo [ $ i ] ne ”Other” ) {
19 $cleanTaxon = $phyloLeve l s [ $ i ] . ” ” . $phylo [ $ i ] . ” ” .

$cleanTaxon . ” ” . $othercount ;
$ i = −1; #stop the loop here because

21 #found the most s p e c i f i c known phylogeny
}

23 }
}

25 $cleanedData {$cleanTaxon} = $data−>{$taxon } ;
}

27 pr in t ” the re were ” . keys(%$data ) . ” taxa\n” ;
p r i n t ” o f which $othercount were o the r s \n” ;

29 re turn \%cleanedData ;
}

3.3.1 Integration With QIIME’s OTU Data

In order to use QIIME’s OTU ouput, the combineFormatOTUData.pl script

was developed as the integration module used before data analysis is done in the

framework’s R libraries. To support a couple variations of QIIME output, this script

has five option flags, a target depth, and a target data folder. The target data folder

determines the root folder that will be searched for OTU data. Recursively searching

the sub folders within this root folder can be disabled or enabled. The target depth
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determines what level of OTU data the script is looking for. For example, L6 data

would be genus and L2 data would be phylum. The possible levels in order are domain

(1), phylum (2), class (3), order (4), family (5), genus (6), and species (7).

The five boolean option flags are samplerows, docounts, propfromcounts, badsam-

ples, and printwithoutothers. The samplerows flag determines the orientation of the

matrix, which determines whether the data samples will be the rows or the columns.

The docounts flag requires that the script is able to find the tab separated file (tsv)

generated from the biom format matrix. This tsv file must also have lineage strings

available, which can be created with the bash command in Code Listing 3.2.

Code Listing 3.2: Convert Biom Matrix To TSV

biom convert − i i n f i l e −o o u t f i l e −−to−t sv −−header−key taxonomy

This process is necessary because QIIME’s OTU matrix output is in the biom

format [21]. In order to convert a biom format matrix into a tsv matrix, a UNIX or

Linux style operating system (OS) is recommended. Ubuntu 15.2 run from VirtualBox

[33] was used to test the biom command successfully at the time of this writing. From

a Linux-based OS the biom command can be installed in a terminal window as seen

in Code Listing 3.3. In order for these commands to work, the pip command needs

to be available. Pip is the PyPA recommended tool for installing python packages,

which makes it a good way to install many useful and important bioinformatics tools

[34].

Code Listing 3.3: Install PIP

1 pip i n s t a l l numpy
pip i n s t a l l biom−format
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The propfromcounts flag will stop the script from searching for proportions data

and instead generate the proportions matrix from counts information. This means

that propfromcounts can’t be true when docounts is false because the script would

be searching for nothing at all. Next, the badsamples flag will cause the script to

keyword search for files that list sample names to be removed from the final matrix.

This is most likely to be necessary for samples with so few counts that the microbiome

is not well represented [4] [35]. Finally, the printwithoutothers flag allows a second

set of matrices to be printed with all taxa not known to the specified depth removed.

For example, a taxon might be known only to the family level, making it an unknown

taxon in a genus-level matrix.

The QIIME pipeline currently provides information for bacterial lineages no deeper

than the genus level so researchers need to turn to other sources for the sequences

that merit higher level resolution. At the time of this writing, the only database

providing species level classification of bacterial lineages is the Seqmatch Ribosomal

Database Project (RDP) database [36].

3.3.2 Integration With Seqmatch RDP Data

In order to access the Seqmatch RDP database and classify bacteria to the species

level, the database has to be accessed over the web. At this time, access the Seq-

match RDP database is only available via the Internet using SOAP (automatable)

or a web browser (manual). Because this framework is focused on automation, the

soapSubmit.pl script was developed to submit sequences to this database. The

sequences in the FASTA [25] file are sent fifty at a time and the responses from Se-

qmatch RDP are saved into a file. The current web service connection information

can be seen in Code Listing 3.4.
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Next, the processRDPOutput.pl script I developed represents the framework’s

integration module with the seqmatch RDP web database. The raw output from

the seqmatch RDP database is first collapsed into a smaller file where only the best

response for each sequence is recorded. This collapsed information is then processed

into proportions and counts OTU matrices following the data pipeline’s standard data

format.

Code Listing 3.4: Seqmatch RDP SOAP Settings

my $ws path = ’ http :// rdp . cme .msu . edu/ s e r v i c e s / seqmatch ’ ;
2 my $ws proxy = ’ http :// rdp . cme .msu . edu/ s e r v i c e s / seqmatch ’ ;
my $ws at t r = { ’ xmlns : n1 ’ =>

’ http :// rdp . cme .msu . edu/ s e r v i c e s / seqmatch ’ } ;
4 my $ws funct ion = ’ n1 : seqmatchWithOptions ’ ;
my $ws wsdl = ’ http :// rdp . cme .msu . edu/ s e r v i c e s / seqmatch?wsdl ’ ;

6 my $ws xml schema = ’ http :// rdp . cme .msu . edu/ s e r v i c e s / seqmatch?xsd=1 ’ ;

3.3.3 Filtering A FASTA By OTUs

With some DNA recovery techniques, biological samples may yield millions of se-

quences. In a case like this the seqmatch RDP process is too slow because it processes

sequences at a rate of roughly 50,000 sequences per 24 hours. Large FASTA files with

millions of sequences can be sent through a QIIME pipeline, resulting in genus-level

OTU classification. The filterFastaByClusteredTaxonomy.pl script was

developed as a three stage process to filter a large FASTA file full of raw sequences

down to smaller FASTA files containing only the sequences associated with a specific

OTU lineage.

First, the function getReferenceIds searches through a folder and keyword searches

the lineage strings in the OTU files. This allows the script to search for a genus, class,

or phylum all at the same time with the benefit that each search will be considered

independent from any other search. By allowing simultaneous searches, the script
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saves researchers computational time and effort. At the end of this process, the OTU

IDs (reference ids) are known for each keyword search being done. Next, the function

getSequenceIds uses a bunch of cluster files (created by QIIME) and builds a list

of the original sequence ids that are associated with the OTU IDs found by getRe-

ferenceIds. For the last step of the process, the function filterFasta opens up the

large FASTA file and uses the lists of sequence ids found by getSequenceIds to

build smaller filtered FASTA files for each search being done. These smaller FASTA

files can then be sent to the seqmatch RDP database, allowing researchers to gain

species level resolution for the OTUs they are most interested in.

Once the Perl scripts in the data pipeline have formatted the data received from

QIIME or Seqmatch RDP, the framework’s real work begins. The R language is used

to perform statistical analysis and machine learning to visualize trends in the data.
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3.4 Data Analysis Portion

Below is a complete listing of R Packages required by the framework. The reason

for choosing the R language for this task is CRAN’s large support for statistical and

graphical libraries [37].

• R - The language used for analysis and visualization [38].

• rgl - Allows for openGL graphics in R [39].

• MASS - Implements LDA and much more [40].

• Rcpp - Lets R use and communicate with c++ code [41].

• biom - API allowing access to the biom format [42].

• HMP - Provides several functions to perform formal hypothesis testing [20].

• gridBase - Generate a list of grid viewports which correspond to the current

inner, figure, and plot regions of the current base plot [43].

• grid - Adds an nx by ny rectangular grid to an existing plot [43].

• ellipse - Routines for drawing ellipses and ellipse-like confidence regions [44].

• Cairo - Allows for the output of graphics with anti-aliasing in Windows [45].

• digest - Enables SHA-1 encoding [46].
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3.4.1 Floating Search

One of the most common problems in multivariate data analysis is feature selection

[47]. The reason it’s so important is the need to identify what parts of a given dataset

are the most important within the context of a specific research question. For exam-

ple, a researcher with microbial data might want to know specifically which intestinal

bacteria differentiate a sick host from a healthy host. The framework attempts to

enable researchers to ask questions like this by using the Floating Search algorithm

[48] in novel ways to achieve Feature Selection. The floating search algorithm is used

to identify a set of dimensions (features) in a dataset in order to optimize separation

and tight grouping of predefined groups (clusters). The J3 score algorithm [49] is

used by the floating search algorithm as a scoring function to assign scores to subsets

of dimensions.

Once the Floating Search algorithm has identified a good set of features, there is

still a need to further reduce the data set to two or three dimensions because humans

can not visualize data in more than three dimensions. In order to accomplish this

task without losing critical information, the framework employs dimensional reduction

techniques.

3.4.2 Dimensional Reduction

Visualization of data to check for grouping and separation is often done using two

or three dimensional scatter plots. Dimensional reduction techniques are an effective

means for taking a larger dataset and projecting it into a newly generated vector

space such that the large majority of the dataset’s critical information is present in a

few dimensions.
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The framework supports three forms of dimensional reduction: Linear Discriminate

Analysis (LDA) [50], Principal Component Analysis (PCA) [51], and Multi Dimen-

sional Scaling (MDS) [19]. Multi Dimensional Scaling is also referred to as Principal

Components Analysis (PCoA). While all three of these mathematical techniques facil-

itate visualization, LDA is used most often in this framework because, in addition to

visualization (Scatter Plots), LDA is also used as a predictor of future data (Classifier

[52]).

3.4.3 Supervised Learning

In order to build an LDA model (Classifier), data with known answers (labels) is

required. Once an LDA model has been constructed, it can be used to label new

data without using a known answer. Before trusting these answers, mathematical

verification of the model’s quality should be performed so that researchers have an

understanding of the model’s reliability. When testing the performance (reliability)

of a classifier (model), cross-validation is a common approach [53].

Cross-fold-validation is accomplished by splitting a dataset up into pieces (groups).

For each fold of the cross-validation process, one group of the data will be withheld

from the classifier. All of the other groups will then be used to train the classifier

(build a model). This model is then used to predict the labels of the withheld data.

The model’s frequency of correct predications provides the researcher with a classifier

accuracy (confidence) for his or her data.

Similar to the concept of withholding data when testing a classifier, this information

should also be withheld when choosing features. In order to have more confidence in

the features chosen by the framework, a novel ranking algorithm has been developed

by moving the feature selection step into a cross-validation process.
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3.4.4 Ranking Features

In order to identify which features best describe subgroups within a data set, the

framework uses statistical information gathered while building LDA classifier models

inside of cross-validation. That information is used to ‘vote’ on or rank the features

(dimensions) of the data.

3.4.4.1 Feature Selection Inside of Cross-Validation

The framework collects statistical information about the data using a two-step

process for each fold of cross-validation. First, feature selection is performed to select

a subset of features based on only the training data for the fold. Then, and LDA

model is constructed from the training data using only the chosen features.

This process can be configured to use either leave-one-out cross-validation or leave-

group-out cross-validation, which determines the number of cross-validation folds and

the data withheld during each fold. Since each fold can potentially select different

features, there is a problem knowing which features to use when visualizing the data.

Therefore, the features that are chosen need to be recorded in a statistics database.

For example, a feature chosen in seven folds of a ten-fold cross-validation would have

a value of seven in the database. The process of collecting statistical information is

described by the pseudo code in Code Listing 3.5.

There is also an independent cross-validation process for each number of features

to be found by feature selection. Therefore, the statistics database tracks all of the

information about dozens of cross-validation events. This allows the framework to

consider not only which features are best, but also how many features should be used.
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Pseudo Code Listing 3.5: Leave-Group-Out Cross-Fold-Validation

Function LGO−CV( matrix , n genera ) :
2 n samples = number o f rows o f matrix

n c o r r e c t = 0
4 f o r each group g (LGO f o l d ) :

The t e s t samples are those from group g
6 The t r a i n i n g samples are a l l remaining samples

Do f l o a t i n g search on t r a i n i n g samples with n genera genera
8 Build LDA model with t r a i n i n g data f i l t e r e d to s e l e c t e d genera

Pred i c t t e s t data with the LDA model
10 n co r r e c t += number samples c o r r e c t l y c l a s s i f i e d

re turn n c o r r e c t /n samples

3.4.4.2 The Statistics Database

The database of statistical information is then analyzed to identify which features

best discriminate between the dataset’s groups, resulting in a separate analysis for

each number of features being considered as seen in Table 4.1. This analysis is

visualized in a box and whisker plot (Figure 4.1). The box plot analysis determines

each set of features by counting the frequency that each feature is chosen during

the cross-validation process and then normalizing that frequency by the number of

folds and overall performance of the LDA classifier. This process results a ranking

of features that favors features that are chosen the most often by the floating search

and weights those features by their actual performance with the classifier.

3.4.4.3 Picking the Number of Features

In order to assist the researcher in choosing the best number of features to use, the

framework visualizes the possible choices in a box and whisker plot [43] [54] [55] where

the y-axis represents LDA classifier accuracy and the x-axis represents the number

of features used. Each box has multiple LDA classifier accuracies dependent on the

number of noise reduction levels applied to the data. For example, a data set might
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have five levels of noise reduction applied, resulting in five independent data sets that

would go through the entire data analysis process until they are all compiled into

the box and whisker plot. Because microbiome data tends to be very sparse, noise

reduction in this case is represented by the removal of exceptionally sparse taxa,

specifically any taxa with nonzero values in fewer than 1, 3%, 5%, 8%, and 16% of

all relevant samples are filtered out of the base matrix. This ‘pruning’ of sparse data

results in up to five separate levels of data used in each box of the box and whisker

plot.

Additionally, the researcher can look at the box and whisker plot to identify peaks

in the classifier’s performance that indicate possible over fitting of the data [56].

An example of over fitting can be seen in the top panel of Figure 4.5 at around 17

features. The pseudo code in Code Listing 3.6 further describes the process by which

the framework chooses each set of features associated with one of the boxes on the

box and whisker plot.

Pseudo Code Listing 3.6: Voting For Genera By Weighted Frequency

1 Function choose genera ( matrix , n genera , i n f o generated by LGO−CV ) :
f o r each LGO−CV:

3 cv accuracy = accuracy returned by LGO−CV
fo r each genus g :

5 count f o l d s [ g ] = 0
f o r each f o l d o f CV:

7 i f f o l d chooses g then count f o l d s [ g ] += 1
accuracy [ g ] += count f o l d s [ g ] ∗cv accuracy

9 Sort genera in to descending order by accuracy [ g ]
r e turn s e t o f the best n genera genera
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3.4.4.4 Multi-Objective Optimization

The process of choosing the correct dimensions requires choosing a number of fea-

tures that exhibits high average accuracy and low variation in those achieved accura-

cies, while giving preference to higher feature counts. The framework approaches this

task by using a multi-objective optimization algorithm called Pareto Optimal Analy-

sis [57]. This algorithm is represented in R by the functions seen in Code Listing 3.7

and 3.8. This technique allows the framework to balance several objectives against

one another, giving the researcher several optimal solutions to work with when visu-

alizing his or her data (Figure 4.5). Additionallly, the dominant points on the frontier

are also written to a Comma Separated Values (CSV) file, so that the framework and

researcher can look at the Pareto information in more detail.

Code Listing 3.7: Find N-Dimensional Pareto Frontier

#th i s func t i on w i l l r e turn the rows o f the matrix
2 #that make up the pareto f r o n t i e r
f indParetoBoundary = func t i on (m) {

4 rows = nrow (m)
c o l s = nco l (m)

6 pareto f r o n t i e r = c ( )
f o r ( po int in 1 : rows ) {

8 domination = apply (m[−point , ] , 1 , f unc t i on (d)
paretoDomination (m[ point , ] , d ) )

10 i f (sum( domination ) == 0) { #no point dominates t h i s po int
pareto f r o n t i e r = c ( pareto f r o n t i e r , po int )

12 }
}

14 o = order (m[ pareto f r o n t i e r , 1 ] )
r e turn ( pareto f r o n t i e r [ o ] )

16 }
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Code Listing 3.8: Check For Pareto Domination

paretoDomination = func t i on ( point , dominator ) {
2 numdims = length ( po int )

i f (numdims != length ( dominator ) ) {
4 pr in t ( ” po in t s o f vary ing l eng th s can ’ t e x i s t in the same

vec to r space ” )
re turn (NULL)

6 }
g r e a t e r = FALSE

8 peer = TRUE
fo r (d in 1 : numdims) {

10 i f ( dominator [ d ] > po int [ d ] ) { g r e a t e r = TRUE; }
i f ( dominator [ d ] < po int [ d ] ) { peer = FALSE; }

12 }
re turn ( g r e a t e r && peer )

14 }

3.4.4.5 Scatter Plots

Once the researcher has determined the number of features, the final step of the

ranking features process is visualizing the results (Figure 4.8). The framework sup-

ports a variety of different visual options for the scatter plots listed below.

• Color - Groups within the data can be colored using either a global color palette

or local choices.

• Symbols - Points on a scatter plot can have different symbols. These symbols

can be applied to the same groups as the colors or a different grouping of the

data.

• Centroids - Black dots can be added to the center of each group.

• Ellipses - To assist in visualizing groups within the data ellipses can be added

at 1 standard deviation.

• Lines of Demarcation - Lines can be drawn to visualize the intersection of

two groups (distributions).
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Scatter plot visualizations are useful for showing separation between groups of data.

This framework supports other visualizations as well. Some examples are pie charts

and bar plots of microbiome distributions.

3.5 Additional Analysis For Metagenomic Data

In order to further explore and visualize aspects of microbiome data, the framework

allows researchers to quickly see their data in pie charts and bar plots.

3.5.1 Core Microbiome

Visualizing the core of a microbiome gives researchers insight into the most impor-

tant or at least most consistent bacteria in their samples. These bacteria are likely to

be the most significant micro organisms in a set of samples often warranting further

investigation.

The definition of a core microbiome with respect to a data set is a list of the bacteria

that are present in every sample in a predefined group of the data (Figure 4.9). The

taxa filter function seen in Code Listing 3.9 can then be applied twice to a dataset

a single group at a time in order to identify the core of the samples in question. By

default the function will return statistical information about the core. When the

names parameter is set to true, the function will return a listing of the names that

are members of the core rather than the statistical information associated with those

members.
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Code Listing 3.9: Filter Taxa To Find Core Microbiome

taxa f i l t e r = func t i on ( taxon , thresho ld , names=FALSE) {
2 f i l t e r = taxon > th r e sho ld

i f (sum( f i l t e r ) == length ( f i l t e r ) ) {
4 i f ( names ) {

re turn (1 )
6 } e l s e {

s t a t s = l i s t (median=median ( taxon ) ,
8 min=min ( taxon ) ,max=max( taxon ) )

re turn ( s t a t s ) ;
10 }

}
12 e l s e { re turn (NULL) ; }

}

Another way of comparing microbiomes is a side-by-side comparison of each mi-

crobiome’s members, which allows researchers to visually see the microbiomes that

their OTU tables describe.

3.5.2 Comparing Taxa Presence Between Microbiomes

The concept behind these bar plot visualizations was the desire to compare different

DNA extraction techniques against each other. Once the data has been segregated

into groups (microbiomes), the R code works by tallying each group by one of four

possible quantification methods.

• Count - This method counts 1 for each sample a given taxon is found in.

• Sum - A straight forward sum of each taxon’s presence within the microbiome.

• Arithmetic Mean - The average presence for each taxon.

• Geometric Mean - The multiplicative rate of each taxon’s change across sam-

ples.
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The most useful method is an arithmetic mean because this method does not favor

microbiome data represented by more samples. The other methods do bring their own

unique strengths and weaknesses, allowing microbiomes to be compared in slightly

different ways. The count method for example results in a low resolution view of

the microbiomes but doesn’t require logarithmic smoothing to compare results across

bacteria. All of these methods result in a bird’s-eye view of the microbiomes, showing

researchers where bacterial taxa are (or aren’t) present in their data. Additionally,

for visualization purposes, the presence of each taxon is logarithmically smoothed

allowing taxa with high microbiome representation (50% or more) to be seen alongside

taxa with low representation (.1% or less).

First, the bar plot is rendered after picking a quantification method (Figure 4.38).

This plot shows averaged presence for each sample site in the rat gut with bacterial

taxa (y-axis) and 0 to 1 normalized presence (x-axis).

In order to tell which bacteria are more represented in one microbiome or the other,

the next step is to generate a log ratio [58] bar plot (Figure 4.39). A log ratio can be

described as logarithms of ratios, which allows the bar plot to grow proportionally to

either the left or right as the ratio changes. This technique is like putting the two

sides of the bar plot into a tug-of-war, causing the differences in bacterial presence

between the two microbiomes to become very noticeable. For example, this was used

to determine that more Lactobacillaceae was found by Qiagen extraction than MoBio.
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CHAPTER 4 RESULTS

The Data Analysis and Visualization for Bioinformatics framework has been used

in several independent microbiome-based case studies. Not every study used every

analysis provided by this framework.

4.1 Mouse Longitudinal Case Study

In the longitudinal mouse study, samples were taken from two cohorts of mice

in six locations: ileum, cecum, tip of cecum, proximal colon, mid colon, and distal

colon. This was done on two separate occasions a year apart (i.e. cohorts). From

this information, six subsets of the data were analyzed and visualized. These subsets

of the data were comprised of strain C57B1/6 and strain CD-1, which were desig-

nated strains B and C, respectively. Separate mirrored analyses were performed for

each mouse strain. The subsets were represented by four, three, and two chamber

comparisons. The ileum, cecum, proximal colon, and distal colon make up the four

chamber analysis, which found 14 genera (strain B) and 15 genera (strain C). The

three chamber analysis consisted of the proximal, mid, and distal colon, while the

cecum and tip of cecum was used for the two chamber analysis. These analyses found

13 genera (strain B) and 12 genera (strain C) for the two chamber sets, and they

resulted in 13 genera (strain B) and 16 genera (strain C) for the three chamber sets.
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For each of the six analyses, the data was further split into five matrices with each

matrix imposing increasingly strict criteria on the genera. In the framework this is

referred to as the pruning levels of a dataset in which genera are only kept if they have

nonzero values in at least 1, 3%, 5%, 8%, or 16% of the samples. Next for each matrix,

LDA cross-fold-validation was performed with feature selection done on each training

set (fold) of the process. Information about which features were used, how often they

were used, and how they performed was then collected into a statistics database. This

database was then visualized in box and whisker plots for each of the six analyses

(Figures 4.1, 4.2, and 4.3) with strain B (top) and strain C (bottom). To further

assist the researcher in the difficult task of choosing the best number of features (best

box from the box and whisker plot), the framework also performed multi-objective

optimization on the box plot’s boxes. This information was then saved to a CSV and

visualized in 3D Pareto frontiers (Figures 4.4, 4.5, and 4.6) with strain B (left) and

strain C (right). Using the Pareto frontier, an optimal number of features was chosen

for each analysis (Tables 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6). With the six sets of features

in hand, the framework visualized each set of genera using LDA (Figures 4.7 and 4.8)

and performed LDA cross-validation to ascertain its confidence in the genera chosen.

Additonally, core microbiomes (Figures 4.10 and 4.9) were identified for each in-

testinal chamber in order to find the most prominent members (genera) of each mi-

crobiome. These prominent genera were then compared to the discriminatory genera

found earlier.
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Figure 4.1: Box plot showing cross-validation accuracies when feature selection was performed inside
of cross-validation to different numbers of dimensions. The base dataset used was Cohort1&2 with
no unknown genera with Strain B (top) and Strain C (bottom) filtered to 4 chambers: Ileum, Cecum,
Proximal Colon, and Distal Colon. The green line shows the accuracy found when using the P1 or
complete dataset. The orange line shows the accuracy found when using the P16% dataset. The
blue line shows the accuracy found when feature selection was performed outside (before) LDA
cross-validation. The red line represents the cross-validation accuracy achieved when a set of taxa
chosen from the 3D-Pareto frontier are used to perform LDA cross-validation.
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Figure 4.2: Box plot showing cross-validation accuracies when feature selection was performed inside
of cross-validation to different numbers of dimensions. The base dataset used was Cohort1&2 with
no unknown genera with Strain B (top) and Strain C (bottom) filtered to 2 chambers: Cecum and
Tip of Cecum. See Figure 4.1 for more information.
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Figure 4.3: Box plot showing cross-validation accuracies when feature selection was performed inside
of cross-validation to different numbers of dimensions. The base dataset used was Cohort1&2 with
no unknown genera with Strain B (top) and Strain C (bottom) filtered to 3 chambers: Proximal
Colon, Mid Colon, and Distal Colon. See Figure 4.1 for more information.
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To assist in selecting the number of features, the 3D Pareto frontier scatter plots vi-

sualize a multi objective optimization of the longitudinal mouse intestine case study’s

box plots. The dominant points on the Pareto frontier have mathematically demon-

strated an ideal balance between good median accuracy and low variance while fa-

voring higher numbers of features.

Figure 4.4: Scatter plot visualizing a 3D-Pareto Frontier, optimizing median cross-validation accu-
racy, low variance, and higher numbers of features. The base dataset used was Cohort1&2 with no
unknown genera with Strain B (left) and Strain C (right) filtered to 4 chambers: Ileum, Cecum,
Proximal Colon, and Distal Colon. Scatter plot of the 3D-Pareto frontier when the above box plot
boxes are optimized by median accuracy, lowest variance, and number of dimensions. The green
points represent boxes that are dominated. The red points represent boxes that are dominated by
no other box, showing equally optimal solutions. The orange border is a series of triangles drawn
when the red points are sorted by median accuracy and sets of 3 points are taken using a sliding
window to draw n - 2 triangles. The blue point in the background represents the origin (0,0,0) as a
frame of reference.
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Figure 4.5: Scatter plot visualizing a 3D-Pareto Frontier, optimizing median cross-validation accu-
racy, low variance, and higher numbers of features. The base dataset used was Cohort1&2 with no
unknown genera with Strain B (left) and Strain C (right) filtered to 2 chambers: Cecum and Tip of
Cecum. See Figure 4.4 for more information.

Figure 4.6: Scatter plot visualizing a 3D-Pareto Frontier, optimizing median cross-validation accu-
racy, low variance, and higher numbers of features. The base dataset used was Cohort1&2 with no
unknown genera with Strain B (left) and Strain C (right) filtered to 2 chambers: Proximal Colon,
Mid Colon, and Distal Colon. See Figure 4.4 for more information.
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Tables 4.1 and 4.2 represent the genera identified using the voting process for the
four chamber LDA plot visualized in Figure 4.7.

Table 4.1: Strain B - 14 genera identified
using the voting process

Genera Rank
Oscillibacter 6.75
Lactobacillus 6.38
Robinsoniella 6.24
Ruminococcus 5.93
Barnesiella 5.65
Dorea 5.63
Coprobacillus 4.97
Coprococcus 4.76
Butyricimonas 4.64
Blautia 4.33
Turicibacter 4.28
Mucispirillum 4.03
Anaerotruncus 3.57
Parabacteroides 3.46

Table 4.2: Strain C - 15 genera identified
using the voting process

Genera Rank
Lactobacillus 6.80
Dorea 6.54
Turicibacter 6.49
Oscillibacter 6.31
Sporacetigenium 6.23
Robinsoniella 6.01
Akkermansia 5.80
Marvinbryantia 5.63
Asaccharobacter 5.45
Anaerotruncus 5.35
Bacteroides 5.17
Butyricicoccus 5.09
Coprobacillus 4.89
Papillibacter 3.98
Sporobacter 3.60

Tables 4.3 and 4.4 represent the genera identified using the voting process for the
two chamber LDA plot visualized in Figure 4.8 (top).

Table 4.3: Strain B - 13 genera identified
using the voting process

Genera Rank
Lactobacillus 4.76
Parabacteroides 4.65
Bacteroides 4.10
Turicibacter 3.70
Robinsoniella 3.48
Butyricimonas 3.38
Mucispirillum 3.27
Barnesiella 3.17
Holdemania 3.04
Lactonifactor 3.03
Anaerovorax 2.82
Marvinbryantia 2.72
Sporobacter 2.40

Table 4.4: Strain C - 12 genera identified
using the voting process

Genera Rank
Sporacetigenium 2.85
Lactobacillus 2.53
Butyricicoccus 2.46
Ruminococcus 2.27
Coprobacillus 2.25
Oscillibacter 2.21
Parabacteroides 2.09
Asaccharobacter 2.04
Johnsonella 1.93
Turicibacter 1.93
Roseburia 1.91
Dorea 1.83
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Tables 4.5 and 4.6 represent the genera identified using the voting process for the
three chamber LDA plot visualized in Figure 4.8 (bottom).

Table 4.5: Strain B - 13 genera identified
using the voting process

Genera Rank
Oscillibacter 5.09
Robinsoniella 4.00
Dorea 3.76
Butyricimonas 3.28
Alistipes 3.12
Ruminococcus 3.10
Barnesiella 3.07
Bacteroides 3.00
Coprobacillus 2.99
Enterorhabdus 2.92
Blautia 2.81
Holdemania 2.65
Parabacteroides 2.55

Table 4.6: Strain C - 16 genera identified
using the voting process

Genera Rank
Bifidobacterium 4.44
Dorea 4.42
Parasutterella 4.01
Turicibacter 3.99
Anaerotruncus 3.75
Akkermansia 3.61
Lactobacillus 3.53
Sporobacter 3.39
Coprobacillus 3.32
Bacteroides 3.31
Robinsoniella 3.29
Parabacteroides 3.12
Johnsonella 3.07
Holdemania 2.99
Allobaculum 2.48
Marvinbryantia 2.40
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The LDA scatter plots presented are the final product of the analysis performed

in the longitudinal mouse study. These plots visualize the longitudinal separation

between bacterial communities found in intestinal chambers (Figures 4.7 and 4.8) for

each of the six sub-sets of the data, using bacteria with genus level resolution.

Figure 4.7: Linear Discriminant Analysis (LDA) of the four main compartments sampled from
C57B1/6 strain mice (left panel) and CD-1 strain mice (right panel). Filled circles and open circles
represent cohorts 1 and 2, respectively. Black dots represent the centroid for each cluster and ellipses
indicate 1 standard deviation. The arrows show the flow of digesta between chambers. The plots
were made using vote-determined genera shown in Tables 4.1 and 4.2. The accuracies were 78.79%
(62.12%)(left panel) and 63.93% (65.57%)(right panel). The first accuracies listed used the vote-
determined genera, while the right side accuracies were for genera identified using ‘floating search
within each cross-validation fold’.
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Figure 4.8: LDA of the Tip of the Cecum and Cecum (top panels) and Proximal, Mid, and Distal
Colon (bottom panels) for C57B1/6 strain mice (left) and CD-1 strain mice (right). Filled circles and
open circles represent cohorts 1 and 2, respectively. Black dots represent the centroid for each cluster
and ellipses indicate 1 standard deviation. The arrows show the flow of digesta between chambers.
The plots were made using vote-determined genera shown in Tables 4.3, 4.4, 4.5, and 4.6. The
accuracies were 93.55% (77.42%)(top left), 71.88% (62.50%)(top right), 62.00% (52.00%)(bottom
left), 58.70% (50.00%)(bottom right). The first accuracies listed used the vote-determined genera,
while the right side accuracies were for genera identified using ‘floating search within each cross-
validation fold’.
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Figure 4.9: Pie charts visualizing the core and noncore microbiome for each intestinal chamber of
the mice. Each plot represents the core genera (as described in Section 3.5.1) across both strains of
mice for that chamber shown relative to the noncore genera.
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Figure 4.10: Pie charts visualizing the core microbiome for each intestinal chamber of the mice.
Each plot represents the core genera (as described in Section 3.5.1) across both strains of mice for
that chamber.
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4.2 Elk Fecal Microbiome Study

For the elk fecal microbiome study, elk were tagged and fecal samples were collected

from four separate Elk populations in the Missoula, Montana area: Bitterroot, Blacks

Ford, Sapphire, and Tobacco Root. When the elk were tagged, basic information like

age, gender, body fat content, and thyroid hormone levels was collected. Unfortu-

nately, body fat information was not collected for the Bitterroot elk, so those elk were

excluded from the body fat analysis. Two sets of analyses were performed in which

the elk were first grouped by region and then body fat. The body fat groupings were

comprised of the following categories: (6 to 7%] 20 samples, (7 to 8%] 21 samples, (8

to 9%] 15 samples, (9 to 10%] 11 samples, and (10%+] 5 samples.

For both analyses, the data was further split into five matrices with each matrix

imposing increasingly strict criteria on the genera. In the framework this is referred

to as the pruning levels of a dataset in which genera are only kept if they have

nonzero values in at least 1, 3%, 5%, 8%, or 16% of the samples. Next for each

matrix, LDA cross-fold-validation was performed with feature selection done on each

training set (fold) of the process. Information about which features were used, how

often they were used, and how they performed was then collected into a statistics

database. This database was then visualized in box and whisker plots for each of the

analyses (Figure 4.11) with body fat (top) and region (bottom). To further assist the

researcher in the difficult task of choosing the best number of features (best box from

the box and whisker plot), the framework also performed multi-objective optimization

on the box plot’s boxes. This information was then saved to a CSV and visualized in

3D Pareto frontiers (Figure 4.12) with body fat (left) and region (right). Using the

Pareto frontier an optimal number of features was chosen for each analysis as seen in

Tables 4.7 and 4.8. With both sets of features in hand, the framework visualized each
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set of genera using LDA (Figures 4.13 and 4.14) and performed LDA cross-validation

to ascertain its confidence in the genera chosen.

Additonally, core microbiomes (Figures 4.16, 4.15, 4.18, and 4.17) were identified

for each region and body fat category in order to find the most prominent members

(genera) of each microbiome. These prominent genera were then compared to the

discriminatory genera found earlier. Even though the elk’s fecal core microbiomes

accounted for only about 15% of the whole, they were too diverse to analyze in full.

Therefore, a threshold of 0.005% used, requiring genera to have at least that much

presence in every sample in order to qualify for that microbiome’s core.
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Figure 4.11: Box plot showing cross-validation accuracies when feature selection was performed
inside of cross-validation to different numbers of dimensions. The base dataset used was population
1 through 4 with no unknown genera with body fat (top) and region (bottom). See Figure 4.1 for
more information.
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To assist in selecting the number of features, the 3D Pareto frontier scatter plots

visualize a multi objective optimization of the elk fecal microbiome case study’s box

plots. The dominant points on the Pareto frontier have mathematically demonstrated

an ideal balance between good median accuracy and low variance while favoring higher

numbers of features.

Figure 4.12: Scatter plot visualizing a 3D-Pareto Frontier, optimizing median cross-validation ac-
curacy, low variance, and higher numbers of features. The base dataset used was population 1
through 4 with no unknown genera with body fat (left) and region (right). See Figure 4.4 for more
information.
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Tables 4.7 and 4.8 represent the genera identified using the voting process for the
LDA plots visualized in Figures 4.13 and 4.14.

Table 4.7: Body Fat - 21 genera identified
using the voting process

Genera Rank
02d06 1.27
Adlercreutzia 1.27
Odoribacter 1.27
Oscillospira 1.27
Sporobacter 1.24
Sutterella 1.23
Coprobacillus 1.16
L7A E11 1.14
Mogibacterium 1.10
Dorea 1.05
Slackia 1.01
rc4-4 0.95
Roseburia 0.80
Methanimicrococcus 0.79
Paraprevotella 0.66
Nitrosomonas 0.57
CF231 0.56
BF311 0.54
Treponema 0.53
Faecalibacterium 0.53
Elusimicrobium 0.53

Table 4.8: Region - 17 genera identified
using the voting process

Genera Rank
CF231 3.55
Victivallis 3.46
Papillibacter 2.92
Slackia 2.83
Blautia 2.62
Anaerorhabdus 2.52
Lactobacillus 2.40
Friedmanniella 2.11
Sporosarcina 2.01
Streptococcus 1.99
Mogibacterium 1.98
Salinibacterium 1.96
Butyricicoccus 1.94
Butyrivibrio 1.84
SMB53 1.78
Roseburia 1.56
Bacteroides 1.39
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The LDA scatter plots presented below are the final product of the analysis per-

formed in the elk fecal microbiome study. These plots visualize the separation of fecal

microbiomes by region (Figure 4.13) and then body fat (Figure 4.14), using bacteria

with genus level resolution.

Figure 4.13: Linear Discriminant Analysis (LDA) of the body fat groups sampled from Sapphire,
Blacks Ford, and Tobacco Root elk. Circles, triangles, and squares represent Sapphire, Blacks Ford,
and Tobacco Root, respectively. Black dots represent the centroid for each cluster and ellipses indi-
cate 1 standard deviation. The arrows show progression from less to more body fat. The accuracies
were 55.56% (29.17%). The first accuracy listed used the vote-determined genera (Table 4.7), while
the right side accuracy was for genera identified using ‘floating search within each cross-validation
fold’.
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Figure 4.14: Linear Discriminant Analysis (LDA) of the regional groups sampled from Sapphire,
Blacks Ford, Bitterroot, and Tobacco Root elk. Black dots represent the centroid for each cluster
and ellipses indicate 1 standard deviation. The accuracies were 85.45% (72.73%). The first accuracy
listed used the vote-determined genera (Table 4.8), while the right side accuracy was for genera
identified using ‘floating search within each cross-validation fold’.
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Figure 4.15: Pie charts visualizing the core and noncore microbiome for each body fat group of the
elk. Each plot represents the core genera (as described in Section 3.5.1) across all elk for that group
using a .005% threshold.
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Figure 4.16: Pie charts visualizing the core microbiome for each body fat group of the elk. Each
plot represents the core genera (as described in Section 3.5.1) across all elk for that group using a
.005% threshold.
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Figure 4.17: Pie charts visualizing the core and noncore microbiome for each regional group of the
elk. Each plot represents the core genera (as described in Section 3.5.1) across all elk for that group
using a .005% threshold.
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Figure 4.18: Pie charts visualizing the core microbiome for each regional group of the elk. Each plot
represents the core genera (as described in Section 3.5.1) across all elk for that group using a .005%
threshold.
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4.3 Effects Of Warming On Permafrost Microbiomes

For the last decade, the significance of interactions between microbial communities

and climate change have exceeded the expectations of the scientific community. These

interactions are not yet fully understood because of the large microbial diversity in

soil and permafrost. A further complication to understanding these systems is the

constant changes in climate currently affecting these soil-based communities around

the world. It is currently believed that as permafrost thaws it does release an unan-

ticipated abundance of greenhouse gases into the atmosphere. Research in this area

is actively progressing in studies being done around the world [59].

For this case study, six permafrost soil areas were divided into eight plots each

on Disko Island, Greenland during the spring of 2012. Samples were then collected

from the permafrost active layer in June, July, and late August of 2013. These eight

plots can be described as being snow-side vs. protected, warmed vs. natural, and

shrub removal vs. normal. The control plot can then be described as natural and

normal, allowing the study to focus on the microbiome differences caused by enhanced

snow accumulation, temperature, and vegetation. The samples were then grouped by

season collected and treatment. Only four of the eight treatments were analyzed:

control, snow-side control, warmed, and snow-side with warming, allowing this case

study to focus on seasonal differences vs. constant temperature differences.

For both analyses, the data was further split into five matrices with each matrix

imposing increasingly strict criteria on the genera. In the framework this is referred

to as the pruning levels of a dataset in which genera are only kept if they have

nonzero values in at least 1, 3%, 5%, 8%, or 16% of the samples. Next for each

matrix, LDA cross-fold-validation was performed with feature selection done on each

training set (fold) of the process. Information about which features were used, how
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often they were used, and how they performed was then collected into a statistics

database. This database was then visualized in box and whisker plots for each of

the analyses (Figure 4.19) with season (top) and treatment (bottom). To further

assist the researcher in the difficult task of choosing the best number of features (best

box from the box and whisker plot), the framework also performed multi-objective

optimization on the box plot’s boxes. This information was then saved to a CSV

and visualized in 3D Pareto frontiers (Figure 4.20) with season (left) and treatment

(right). Using the Pareto frontier an optimal number of features was chosen for

each analysis as seen in Tables 4.9 and 4.10. With both sets of features in hand,

the framework visualized each set of genera using LDA (Figures 4.21 and 4.22) and

performed LDA cross-validation to ascertain its confidence in the genera chosen.

Additonally, core microbiomes (Figures 4.24, 4.23, 4.26, and 4.25) were identified for

each season and permafrost treatment in order to find the most prominent members

(genera) of each microbiome. These prominent genera were then compared to the

discriminatory genera found earlier. Similar to the elk study’s fecal microbiome, the

permafrost microbiomes were very diverse, but not so diverse as to require a special

threshold during core microbiome identification.
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Figure 4.19: Box plot showing cross-validation accuracies when feature selection was performed
inside of cross-validation to different numbers of dimensions. The base dataset used was sample set
1 through 3 with no unknown genera with season (top) and treatment (bottom). See Figure 4.1 for
more information.
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To assist in selecting the number of features, the 3D Pareto frontier scatter plots

visualize a multi objective optimization of the warmed vs. natural permafrost mi-

crobiome case study’s box plots. The dominant points on the Pareto frontier have

mathematically demonstrated an ideal balance between good median accuracy and

low variance while favoring higher numbers of features.

Figure 4.20: Scatter plot visualizing a 3D-Pareto Frontier, optimizing median cross-validation accu-
racy, low variance, and higher numbers of features. The base dataset used was sample set 1 through
3 with no unknown genera with season (top) and treatment (bottom). See Figure 4.4 for more
information.
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Tables 4.9 and 4.10 represent the genera identified using the voting process for the
LDA plots visualized in Figures 4.21 and 4.22.

Table 4.9: Season - 13 genera identified us-
ing the voting process

Genera Rank
Conexibacter 3.33
Mucilaginibacter 3.33
Burkholderia 2.49
Caedibacter 2.42
Singulisphaera 2.41
Planctomyces 2.39
Variovorax 2.36
Ferruginibacter 2.27
Phaselicystis 2.04
Sediminibacterium 1.97
Luteibacter 1.90
Asticcacaulis 1.70
Flavisolibacter 1.56

Table 4.10: Treatment - 23 genera identi-
fied using the voting process

Genera Rank
Acidovorax 1.22
Flavisolibacter 0.96
Schlesneria 0.86
Streptacidiphilus 0.82
Humicoccus 0.80
Paenibacillus 0.77
Burkholderia 0.74
Herbaspirillum 0.71
Cystobacter 0.66
Phenylobacterium 0.63
Streptomyces 0.59
Caedibacter 0.59
Planctomyces 0.58
Gemmatimonas 0.57
Chondromyces 0.55
Rhodanobacter 0.52
Iamia 0.51
Gemmata 0.50
Pirellula 0.49
Actinoallomurus 0.46
Ferruginibacter 0.45
Pedomicrobium 0.44
Luteolibacter 0.44
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The LDA scatter plots presented below are the final product of the analysis per-

formed in the permafrost microbiome case study. These plots visualize the separation

of permafrost microbiomes by season (Figure 4.21) and then treatment (Figure 4.22),

using bacteria with genus level resolution.

Figure 4.21: Linear Discriminant Analysis (LDA) of the seasonal groups sampled in June, July, and
August. Black dots represent the centroid for each cluster and ellipses indicate 1 standard deviation.
The accuracies were 75.00% (71.32%). The first accuracy listed used the vote-determined genera
(Table 4.9), while the right side accuracy was for genera identified using ‘floating search within each
cross-validation fold’.
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Figure 4.22: Linear Discriminant Analysis (LDA) of the treatment groups: Control, Snow-side
Control, Warmed, and Snow-side Warmed. Black dots represent the centroid for each cluster and
ellipses indicate 1 standard deviation. The accuracies were 58.21% (29.85%). The first accuracy
listed used the vote-determined genera (Table 4.10), while the right side accuracy was for genera
identified using ‘floating search within each cross-validation fold’.
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Figure 4.23: Pie charts visualizing the core and non-core microbiome for each seasonal group of the
permafrost. Each plot represents the core genera (as described in Section 3.5.1) across all samples
for that group using a 0.0% threshold.
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Figure 4.24: Pie charts visualizing the core microbiome for each seasonal group of the permafrost.
Each plot represents the core genera (as described in Section 3.5.1) across all samples for that group
using a 0.0% threshold.
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Figure 4.25: Pie charts visualizing the core and non-core microbiome for each treatment of per-
mafrost. Each plot represents the core genera (as described in Section 3.5.1) across all samples for
that group using a 0.0% threshold.
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Figure 4.26: Pie charts visualizing the core microbiome for each treatment of permafrost. Each plot
represents the core genera (as described in Section 3.5.1) across all samples for that group using a
0.0% threshold.
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4.4 Effects Of Yogurt On Mouse Intestinal Microbiomes

The food industry has seen an increase in the sales of probiotic foods because

people believe that such products can enhance their health. This case study aimed

to show that probiotic bacteria don’t actually replace a host’s intestinal bacteria,

but rather that they perturb the intestinal environment in a way that modifies the

total microbiome composition. This is believed to cause shifts in the distribution of

bacteria across the intestinal microbiome. Toward this end, ten mice were dissected

and sampled from six intestinal locations: ileum, cecum, tip of cecum, proximal colon,

mid colon, and distal colon. Five of the mice had been fed yogurt in addition to their

normal diet and the other five mice were not fed yogurt.

For this analysis, the data was further split into five matrices with each matrix

imposing increasingly strict criteria on the genera. In the framework this is referred

to as the pruning levels of a dataset in which genera are only kept if they have

nonzero values in at least 1, 3%, 5%, 8%, or 16% of the samples. Next for each

matrix, LDA cross-fold-validation was performed with feature selection done on each

training set (fold) of the process. Information about which features were used, how

often they were used, and how they performed was then collected into a statistics

database. This database was then visualized in box and whisker plot for the analysis

(Figure 4.27). To further assist the researcher in the difficult task of choosing the

best number of features (best box from the box and whisker plot), the framework also

performed multi-objective optimization on the box plot’s boxes. This information was

then saved to a CSV and visualized in a 3D Pareto frontier (Figure 4.28). Using the

Pareto frontier an optimal number of features was chosen for the analysis (Table 4.11).

With both sets of features in hand, the framework visualized the vote determined

genera using LDA (Figure 4.29) and performed LDA cross-validation to ascertain its
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confidence in the genera chosen.

Additionally, core microbiomes (Figures 4.31 and 4.30) were identified for each

mouse treatment in order to find the most consistently present members (genera)

of each microbiome (sampling site). These prominent genera were then compared

to the discriminatory genera found earlier. Then, in order to visualize the entire

control microbiome vs. the yogurt fed microbiome, a bar plot analysis was done

at the Phylum level (Figures 4.32, 4.33) and Family level (Figures 4.34, 4.35) of

taxonomic resolution. This analysis was intended to identify specific bacteria or

groups of bacteria that warranted further investigation.

Figure 4.27: Box plot showing cross-validation accuracies when feature selection was performed
inside of cross-validation to different numbers of dimensions. The base dataset used was yogurt mice
cohort 1 with no unknown genera. See Figure 4.1 for more information.
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Figure 4.28: Scatter plot visualizing a 3D-Pareto Frontier, optimizing median cross-validation accu-
racy, low variance, and higher numbers of features. The base dataset used was yogurt mice cohort
1 with no unknown genera. See Figure 4.4 for more information.

Table 4.11 represents the genera identified using the voting process for the LDA plot
visualized in Figure 4.29.

Table 4.11: Yogurt Mice - 12 genera identified using the voting process

Genera Rank
Sporacetigenium 3.99
Oscillibacter 3.58
Dorea 3.42
Coprococcus 3.10
Paralactobacillus 2.85
Lactobacillus 2.78
Hydrogenoanaerobacterium 2.77
Staphylococcus 2.77
Parasutterella 2.45
Clostridium 2.11
Acetitomaculum 2.04
Turicibacter 1.71
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The LDA scatter plot (Figure 4.29) was created using voted genera to visualize

differentiation between control mice and the yogurt fed mice.

Figure 4.29: Linear Discriminant Analysis (LDA) of the yogurt fed and control mice. Black dots
represent the centroid for each cluster and ellipses indicate 1 standard deviation. The accuracies
were 96.67% (83.33%). The first accuracy listed used the vote-determined genera (Table 4.11), while
the right side accuracy was for genera identified using ‘floating search within each cross-validation
fold’.
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Figure 4.30: Pie chart showing median presence of bacterial genera that are present in every sample
of each group. The group of mice labeled control (left) did not receive yogurt. The group of mice
labeled yogurt (right) did receive yogurt.

Figure 4.31: Pie chart showing median presence of bacterial genera that are present in every sample
of each group. The group of mice labeled control (left) did not receive yogurt. The group of mice
labeled yogurt (right) did receive yogurt.
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Bar plots visualizing the microbiome of control mice vs. yogurt fed mice at first

at Phylum (Figures 4.32, 4.33) and then Family (Figures 4.34, 4.35) level resolution.

The bacteria with the greatest presence across all samples are arranged towards the

top. Additionally for visualization purposes, the presence of each bacteria is loga-

rithmically smoothed allowing bacteria with high microbiome representation (50% or

more) to be seen alongside bacteria with low representation (.1% or less).
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Figure 4.32: Side-by-side bar plot showing average bacterial presence by intestinal chamber (with
Phylum level resolution) found in the control (left) mice and the yogurt (right) mice.
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Figure 4.33: Side-by-side bar plot showing a log ratio of average bacterial presence by intestinal
chamber (with Phylum level resolution) found in the control (left) mice and the yogurt (right) mice.
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Figure 4.34: Side-by-side bar plot showing average presence by chamber (with Family level resolu-
tion) found in the control (left) mice and the yogurt (right) mice.
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Figure 4.35: Side-by-side bar plot showing a log ratio of average presence by chamber (with Family
level resolution) found in the control (left) mice and the yogurt (right) mice.
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4.5 DNA Recovery Qiagen vs. MoBio

Researchers today have many different options when selecting methods for the

recovery of DNA. In order to compare two of these methods against each other, eight

rats were dissected and sampled at three intestinal locations: cecum, proximal colon,

and distal colon. This set of 24 samples was then processed using Qiagen and then

MoBio DNA extraction kits in turn. The side-by-side bar plots (Figures 4.38 and

4.39) were then created to visualize bacteria identified uniquely by one method or

the other. Then in order to visualize the microbiomes from a different perspective, a

core microbiome analysis (Figures 4.37 and 4.36) was done to determine which core

bacteria are found more readily by one method or the other.

Figure 4.36: Pie chart showing median presence of bacterial genera that are present in every sample
of each group. The two DNA recovery methods are Qiagen (left) and MoBio (Right).
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Figure 4.37: Pie chart showing median presence of bacterial genera that are present in every sample
of each group. The two DNA recovery methods are Qiagen (left) and MoBio (Right).

Bar plots visualizing rat microbiomes found by Qiagen and MoBio DNA recov-

ery techniques at Family level resolution (Figures 4.38, 4.39). The bacteria with the

most presence across all samples are arranged towards the top. Additionally for visu-

alization purposes, the presence of each bacteria is logarithmically smoothed allowing

bacteria with high microbiome representation (50% or more) to be seen alongside

bacteria with low representation (.1% or less).
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Figure 4.38: Side-by-side bar plot showing average presence by intestinal chamber (with Family level
resolution) found by the Qiagen (left) and MoBio (right) methods.
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Figure 4.39: Side-by-side bar plot showing a log ratio of average presence by intestinal chamber
(with Family level resolution) found by the Qiagen (left) and MoBio (right) methods.
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CHAPTER 5 DISCUSSION

The Data Analysis and Visualization for Bioinformatics Framework allows re-

searchers to ask and answer questions about the bacterial communities that other

studies have been unable to address due to the complicating inter-subject variation

present in microbiome analyses [7] [8] [9].

5.1 Discriminating Between Microbiomes

In several case studies, the framework was successful in identifying bacterial genera

that discriminate between microbiomes. These tables can be seen in chapter 4 in the

appropriate case study section (Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10,

and 4.11).

In order to find the discriminatory genera, each case study went through a sim-

ilar set of analyses using the framework developed for these studies. This involved

performing feature selection inside of cross-validation, and then visualizing this infor-

mation in box and whisker plots (Figures 4.1, 4.2, 4.3, 4.11, 4.19, and 4.27). From

the box plots, multi-objective analysis was done and visualized in 3D-Pareto frontiers,

which allowed the researcher to consider only the numbers of features that performed

the best (Figures 4.4, 4.5, 4.6, 4.12, 4.20, and 4.28). Then using these discriminatory

genera, the separation between the microbiomes was visualized in LDA scatter-plots

(Figures 4.7, 4.8, 4.13, 4.14, 4.21, 4.22, and 4.29).
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The cross-validation numbers presented in the LDA scatter plot captions are rep-

resentative of the framework’s confidence in its ability to assign future samples to

the correct microbiome. The two cross-validation accuracies displayed on the LDA

scatter plot images refer to first the LDA classifier’s performance using the most dis-

criminatory taxa identified by the box plot and Pareto frontier analysis. The second

accuracy is the cross-validation accuracy achieved when a floating search was used on

each fold to identify a number of genera inside of LDA cross-fold-validation.

5.2 Visualizing Core Microbiome Members

In each case study, the core members (genera) of each microbiome were identified

using the method described in Section 3.5.1 (Figures 4.10, 4.9, 4.18, 4.17, 4.16, 4.15,

4.24, 4.23, 4.26, 4.25, 4.31, 4.30, 4.37, and 4.36). The core microbiome is comprised of

the most consistently present members of a microbiome at each sampling site, which

allows researchers to identify which bacterial genera may warrant further study. These

core members were also found to often overlap with the discriminatory genera used

to visualize microbiome separation (LDA scatter plots). This a good double check of

the significance of these bacteria because the core analysis is completely independent

from the discriminatory genera analysis.

5.3 Visualizing Microbiomes Side-by-side

In some studies it was useful to visually compare one microbiome to another (Fig-

ures 4.32, 4.34, and 4.38). This bird’s-eye view allowed the researchers to easily see

which bacteria were most present and where, but did not clearly display where one

microbiome had more of a given bacterium than the other. In order to address this
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problem, log ratio bar plots were created, showing only the differences between the

microbiomes (Figures 4.33, 4.35, and 4.39).

This kind of bar plot visualization can be done at multiple levels phylogenetic res-

olution. For example, QIIME produces OTU tables for phylum, class, order, family,

and genus level resolution. Additionally, the Seqmatch RDP database provides OTU

resolution to the species level.

If a microbiome has too many members to be clearly visualized with this method,

side-by-side bar plots could be combined with core microbiome analysis. Combining

algorithms like this would allow researchers to get a picture of the distribution of the

most significant organisms in the microbiome.

5.4 Biological Conclusions From Case Studies

Each case study done with this framework had different goals. Surprisingly, the

same set of algorithms was able to address these varied research questions.

5.4.1 Separation Between Mouse Intestinal Microbiomes

During the longitudinal mouse study, the framework was able to show clear sepa-

ration between the microbiomes of the six intestinal sample sites. As expected, the

strain B (inbred) mice showed less inter-subject variation than the strain C (outbred)

mice. This was an anticipated result, and it was nice to see the results meet the

expectations in this way (Figures 4.7 and 4.8).

The reason for performing analysis on three sub-sets of the six sampling locations

was to observe not just the microbial interaction on the system as a whole, but to

observe the microbial interactions in more nuanced scenarios. For example, in the

early intestinal chambers Lactobacillus was one of the most significant bacterium,
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but later in the colon Dorea and Bacteroides became more important for telling

chambers apart. Observations like this may someday lead to a greater understanding

of intestinal microbiology and its impact on our health.

5.4.2 How Elk Fecal Microbiomes Vary For Body Fat

Recently there have been many studies of the fecal microbiome concerning obesity

and diversity [60] [61] [62]. At the Holben Lab, the framework was used to analyze

data recovered from elk fecal pellets in four Montana areas near Missoula: Sapphire,

Blacks Ford, Tobacco Root, and Bitterroot. The majority of the elk sampled were

pregnant females, but there were also males and non-pregnant females. Due to the

lack of body fat information for the Bitterroot elk, those elk were excluded from the

body-fat analysis.

The framework was able to determine discriminatory bacterial genera separating

the elk’s fecal microbiomes by region with a high degree of confidence (Figure 4.14).

Additionally, it was able to discriminate between the microbiomes across all regions

as a function of body-fat (Figure 4.13); however, even with moderately significant

results the framework’s confidence was much lower for the body-fat than the regional

results.

These results suggest a novel method for identifying animal condition through the

host fecal microbiome. This bioinformatics approach could presumably be conducted

on non-invasive samples in the future, representing a relatively inexpensive informa-

tion source. Wildlife managers could then use this information when facing the chal-

lenges of protecting threatened and endangered species or maintaining game species.

Therefore, the potential applications of this research are far reaching and may, with

further refinement, represent a significant tool for conservation in the future.
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5.4.3 How Warming And Season Effect The Soil Microbiome

The microbiome of permafrost samples is particularly interesting in its effect on

our understanding of climate change [59]. Even recognizing that soil and permafrost

microbiomes are particularly difficult to analyze due to their massive diversity, the

framework was used at the Holben Lab in an attempt to identify discriminatory bac-

terial genera in permafrost soil samples between different treatments (environmental

conditions) (Figure 4.22) in Greenland. I found that the seasonal changes in the per-

mafrost microbiome were so overwhelming that discrimination between permafrost

treatments was only moderately successful. On the other hand, the framework had

much more success discriminating between seasons (Figure 4.21). This leads me to be-

lieve that a significant global warming event could change the microbial communities

in the worlds soil and permafrost in a profound way.

5.4.4 Effects Of Yogurt On The Mouse Intestinal Microbiome

In one of the framework’s more confident results, the microbiome of the yogurt fed

mice was shown in Figure 4.29 to be to be almost completely differentiable from the

microbiome of the control mice. In this study, ten mice were sampled in six intestinal

locations each. Five of the mice were fed yogurt and five were not.

Microbiome presence was also visualized for the yogurt mice case study (Figures

4.34, 4.35, 4.32, and 4.33). This was done to visually identify bacteria there were

present or more present in either the control mice or the yogurt fed mice. This analysis

led to a list of genera that warranted further investigation. Being a preliminary

experiment, further analyses were beyond the scope of this work, but could someday

be incorporated in the framework’s libraries.
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5.4.5 DNA Recovery Qiagen Vs MoBio

In the DNA recovery methods case study two different procedures were used on the

same set of samples. These results were then compared (MoBio vs. Qiagen) across

their microbiomes (Figures 4.38 4.39). When looking across the family resolution

microbiomes as a whole, the Qiagen extraction method allowed detection of genera

in 12 sample locations where they were not found by MoBio. Meanwhile, MoBio

allowed detection of genera in 1 sample location where it wasn’t detected by the

Qiagen method.

5.5 Conclusions

This framework provides many functions for computational and visual data anal-

ysis which can be used by researchers to better understand metagenomic and other

multivariate data. I have proven, in several case studies, that bacterial taxa can be

found and used to discriminate one microbiome from another with reasonable confi-

dence. In addition, these results were corroborated by identifying core microbiome

members and explored by visualizing differences between microbiomes.
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5.6 Future Directions

In the future, this framework could become much more accessible and useful to

researchers given a web-based graphical user interface. A feature like this would

allow researchers to apply these methods to their data without having to program in

the Perl and R languages. Furthermore, a Graphical User Interface (GUI) would be a

convenience even to veteran programmers because they would have no need to learn

the inner workings of this framework.

Furthermore, a significant computational bottleneck in the framework’s method-

ology is the the R language implementation of the Floating Search algorithm. The

computational process could be made considerably faster by refactoring this function

and others into C or C++. These faster and more efficient implementations could

then be brought into the framework’s R code as external libraries via the Rcpp pack-

age. Potentially, this could change computational time (in some cases) from weeks to

hours.

In order to improve the maintainability and assist with the implementation of future

functionality, the framework as a whole could benefit from a set of test modules. These

modules would confirm the correctness of various algorithms and functions throughout

the framework, allowing developers to know when new functionality might not be well

integrated with the framework as a whole.

Lastly with newer versions of the R language, better programming styles are being

supported. If this framework was to receive significant work in the future, much

of it would benefit from being rewritten to take advantage of the language changes

provided by newer implementations of the R language.
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[48] P. Pudil, J. Novovičová, and J. Kittler, “Floating search methods in feature

selection,” Pattern recognition letters, vol. 15, no. 11, pp. 1119–1125, 1994.

[49] K. Fukunaga, Introduction to statistical pattern recognition. Academic press,

2013.

[50] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals

of Eugenics, vol. 7, no. 7, pp. 179–188, 1936.

[51] K. Pearson, “On lines and planes of closest fit to systems of points in space,”

vol. 2, no. 6, p. 559572, 1901.

[52] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning.

MIT press, 2012.

[53] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning.

Springer series in statistics Springer, Berlin, 2001, vol. 1.

[54] J. M. Chambers, Graphical methods for data analysis, 1983.

[55] R. A. Becker, J. M. Chambers, and A. R. Wilks, “The new s language,” Pacific

Grove, Ca.: Wadsworth & Brooks, 1988, vol. 1, 1988.

[56] G. Trunk, “A problem of dimensionality: A simple example,” Pattern Analysis

and Machine Intelligence, IEEE Transactions on, no. 3, pp. 306–307, 1979.



www.manaraa.com

92

[57] C.-L. Hwang and A. S. M. Masud, Multiple objective decision makingmethods

and applications, 1979.

[58] A. Ultsch, Is Log Radio a Good Value for Identifying Differential Expressed Genes

in Microarray Experiments? Fachbereich Mathematik und Informatik, 2003.

[59] C. Luo, L. M. Rodriguez-R, E. R. Johnston, L. Wu, L. Cheng, K. Xue, Q. Tu,

Y. Deng, Z. He, J. Z. Shi et al., “Soil microbial community responses to a decade

of warming as revealed by comparative metagenomics,” Applied and environ-

mental microbiology, vol. 80, no. 5, pp. 1777–1786, 2014.

[60] M. Raman, I. Ahmed, P. M. Gillevet, C. S. Probert, N. M. Ratcliffe, S. Smith,

R. Greenwood, M. Sikaroodi, V. Lam, P. Crotty et al., “Fecal microbiome and

volatile organic compound metabolome in obese humans with nonalcoholic fatty

liver disease,” Clinical Gastroenterology and Hepatology, vol. 11, no. 7, pp. 868–

875, 2013.

[61] S. Yildirim, C. J. Yeoman, M. Sipos, M. Torralba, B. A. Wilson, T. L. Goldberg,

R. M. Stumpf, S. R. Leigh, B. A. White, and K. E. Nelson, “Characterization

of the fecal microbiome from non-human wild primates reveals species specific

microbial communities,” PloS one, vol. 5, no. 11, p. e13963, 2010.

[62] S. Greenblum, P. J. Turnbaugh, and E. Borenstein, “Metagenomic systems bi-

ology of the human gut microbiome reveals topological shifts associated with

obesity and inflammatory bowel disease,” Proceedings of the National Academy

of Sciences, vol. 109, no. 2, pp. 594–599, 2012.


